

UNIDAD 4:

GIGANTES GASEOSOS

Autor: Oswaldo González

Revisión y actualización de contenidos: Nayra Rodríguez,

Alejandra Goded

Asesor Científico: Alfred Rosenberg

Ilustraciones: Inés Bonet

GUÍA PARA EL PROFESORADO

En esta unidad se pretende que el alumnado estudie la morfología de los planetas estudiando su superficie visible e intente extraer datos de interés con las mediciones que puede efectuar a partir de las imágenes. Aunque no es completamente necesario, sería interesante que el alumnado tenga unos conocimientos básicos de trigonometría para el cálculo de la inclinación de los anillos de Saturno.

A continuación, vamos a mostrar los resultados de cada actividad. Hay que indicar que los resultados ofrecidos no tienen que coincidir con los que se obtengan en clase, pero sirven de referencia.

ACTIVIDAD 1

MEDICIÓN DEL ACHATAMIENTO DE JÚPITER Y DETECCIÓN DE SU MANCHA ROJA

La imagen que usamos para calcular el achatamiento de Júpiter fue elegida por su proximidad a la fecha de oposición, de forma que vemos toda la superficie del planeta. En otro momento (tan sólo un mes antes o después de la oposición), la fase que presentaría el planeta haría que la distancia que midiéramos a lo largo del ecuador fuera más pequeña que la real.

El diámetro ecuatorial medido es: 162,8 píxeles

El diámetro polar medido es: 153,9 píxeles

Aplicando la fórmula obtenemos:

$$\left(1 - \frac{Diametro\ polar}{Diametro\ ecuatorial}\right)* 100 = 5,4 \%$$

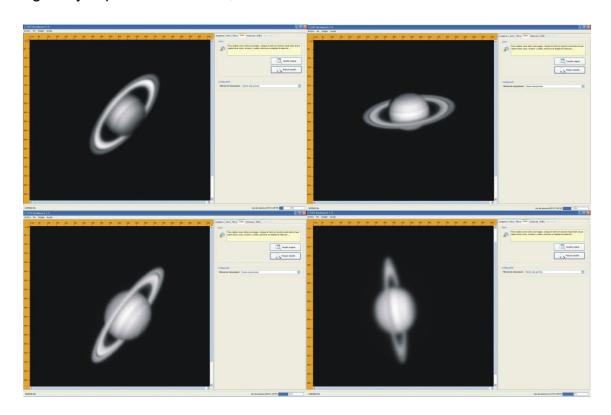
Es decir, el diámetro polar es un 5,4% inferior al ecuatorial.

Los datos más precisos del diámetro polar y ecuatorial de Júpiter son:

• Diámetro polar: 135.000 km

Diámetro ecuatorial: 142.800 km

Aplicando la fórmula, obtenemos un 5.5 % de achatamiento.


La medida obtenida para la GMR es de unos 32 píxeles que, multiplicados por los 1.040 km que corresponden a cada píxel, nos da un tamaño de 33.280 km para dicha tormenta, más de dos veces el tamaño de la Tierra. Este valor es aproximado, ya que es muy difícil determinar donde comienza y acaba esta zona nubosa.

ACTIVIDAD 2

INCLINACIÓN DE LOS ANILLOS DE SATURNO

A medida que Saturno se desplaza por su órbita, el aspecto que nos ofrecen sus anillos va cambiando, como se puede observar en las siguientes imágenes obtenidas durante cuatro años. Se aprecia que la inclinación de los anillos va disminuyendo, de forma que llegan incluso a ser invisibles durante los meses de agosto y septiembre de 2009, cuando los observaríamos de canto.

Con los datos de los diámetros en las direcciones ecuatorial y polar de los anillos podemos obtener su inclinación. Tenemos que aclarar que, mientras los extremos del anillo exterior son perfectamente visibles en la dirección ecuatorial, no ocurre lo mismo cuando intentamos medirlo de forma polar, debido a que el propio planeta oculta el sistema de anillos. Por tanto, tendremos que hacer una estimación de la posición del borde prolongando la parte visible a ambos lados del planeta. Aunque no es un método exacto, sirve para tener una buena estimación de la inclinación con la que vemos el anillo del planeta en ese momento.

Imagen	Fecha	Diámetro Ecuatorial (Te)	Diámetro Polar (Tp)	Tp / Te	arcsen(Tp/Te)· 180/π
218h000	13/01/2005	172,5	69,7	0,4041	23,8 °
503f000	24/02/2006	168,3	55,9	0,3321	19,4 °
803b000	10/02/2007	170,1	42,0	0,2469	14,3 °
1038d000	11/03/2008	166,4	28,7	0,1725	9,9 °

- Datos que se obtienen de la medición que realiza el alumnado
- Datos que se obtienen realizando los cálculos pertinentes

Con los datos obtenidos de la inclinación de los anillos de Saturno vista desde la Tierra, comprobamos que fue disminuyendo a lo largo de esos 4 años. A finales del verano de 2009 la inclinación de los anillos sería de 0 º.

También podríamos repetir con Saturno la medición de su achatamiento, mayor incluso que el de Júpiter. Para esto debemos medir el diámetro del planeta, sin contar los anillos. En la pestaña ASTRO podemos ver que el factor de escala en la primera imagen es de 1.630 km por píxel. Si multiplicamos este valor por el diámetro medido en píxeles, obtenemos

Diámetro polar de Saturno: 108.000 km
Diámetro ecuatorial de Saturno: 120.536 km

Aplicando la fórmula correspondiente, obtenemos que el diámetro polar es un 10,4% menor que el ecuatorial.

Nayra Rodríguez Eugenio, Alejandra Goded (<u>peter@iac.es</u>) Unidad de Comunicación y Cultura Científica Contacto:

Instituto de Astrofísica de Canarias

Calle Vía Láctea s/n 38205 La Laguna Santa Cruz de Tenerife

España

Esta unidad didáctica ha sido financiada por:

